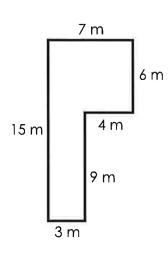
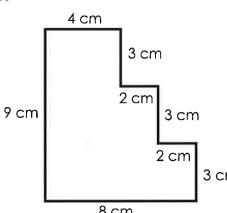

(Area of an Irregular Shape)—-

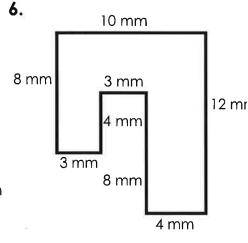
Find the area of each shape. Remember to include units in your answer.


1.

2.

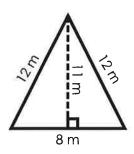

3.


answer:____ answer:____

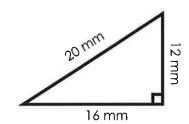

answer:____

4.

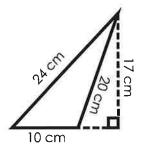
5.



answer:_____ answer:____ answer:____

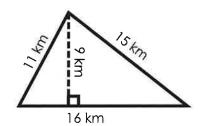

Area and Perimeter of a Triangle

Find the area and perimeter of each triangle.

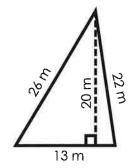

a.

b.

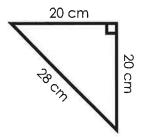
C.



perimeter = ______ perimeter = _____


area = _____

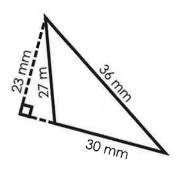
perimeter = _____


d.

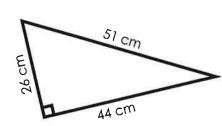
e.

f.

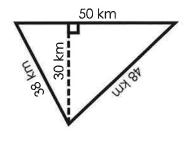
perimeter = _____


area = _____

perimeter = _____


area = ______

perimeter = _____


g.

h.

i.

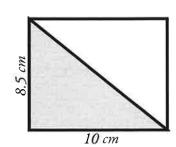
area = _

area = _____ area = _____

perimeter = ______ perimeter = _____ perimeter = _____

Area of Rectangles & Triangles

Area of a Triangle


 $\frac{1}{2} \times (b \times b) = A$

To find the area of a triangle, multiply ½ x base x height.

Area of a Rectangle

 $l \times w = A$

To find the area of a rectangle, multiply length x width.

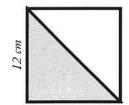
Area of the shaded triangle:

 $b = 10 \, \text{cm}$

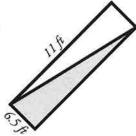
b = 8.5 cm

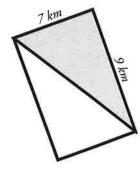
 $\frac{1}{2}$ x 10 cm x 8.5 cm = 42.5 cm²

Area of the rectangle:


 $l = 10 \, \text{cm}$

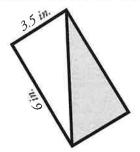
w = 8.5 cm

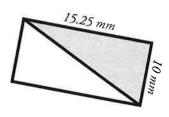

 $10 \text{ cm x } 8.5 \text{ cm} = 85 \text{ cm}^2$


Find the area of each rectangle and shaded triangle.

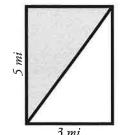
a.

b.




area of the square = ______ area of the rectangle = _____ area of the rectangle = _____

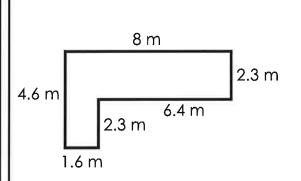
area of the triangle = _______ area of the triangle = ______ area of the triangle = ______


d.

e.

f.

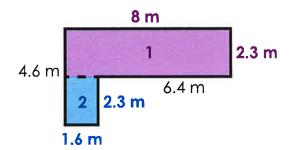
area of the rectangle = ______ area of the rectangle = _____ area of the rectangle = _____


area of the triangle = ______ area of the triangle = _____ area of the triangle = _____

Challenge: Find the area of the polygon. Use the back if you need work space.

Area of an Irregular Shape

To find the area of an irregular shape made of two or more rectangles, cut the shape into two or more parts and add the area of each part.

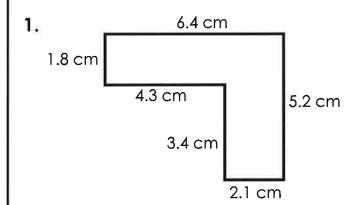


Area of Rectangle 1:

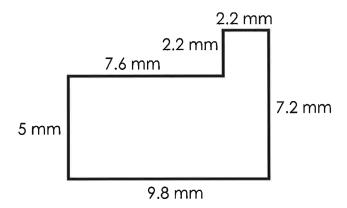
 $A = I \times W$ $A = 8 \times 2.3$ $A = 18.4 \, \text{m}^2$

Area of Rectangle 2:

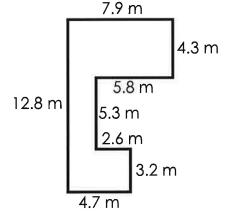
 $A = 1 \times W$ $A = 1.6 \times 2.3$ $A = 3.68 \text{ m}^2$

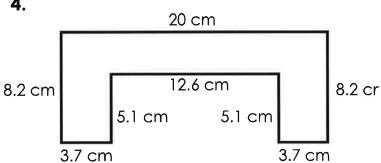


Total Area:

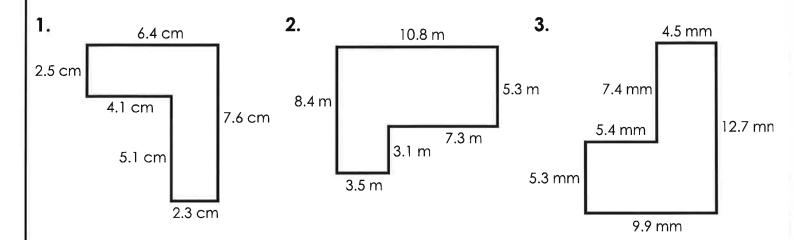

 $A = 18.4 \text{ m}^2 + 3.68 \text{ m}^2$

 $A = 22.08 \text{ m}^2$


Find the area of each shape. Include units in your answer.

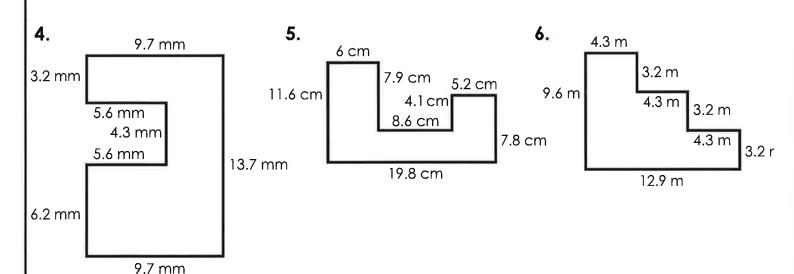


3.



4.

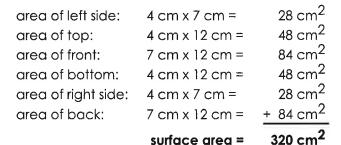
Area of an Irregular Shape

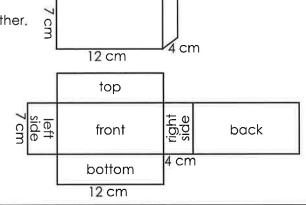

Find the area of each shape. Remember to include units in your answer.

answer:

answer:

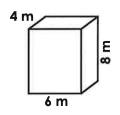
answer:




answer:_____ answer:____

answer:____

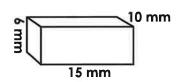
Surface Area


Surface area is the total area of all faces of a figure. To find the surface area of a rectangular prism, imagine it unfolded into six rectangles. Find the area of each rectangle and add them together. The sum is the surface area of the rectangular prism.

surface area = __

Find the surface area of the following figures.

area of left side: _____ **x** ____ = ____


area of top: _____ x ____ = ____

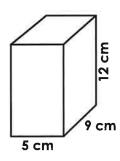
area of front: _____ x ____ = ____

area of bottom: ____ **x** ___ = ____

area of right side: _____ **x** ____ = ____

area of back: _____ x ____ = ____ surface area = _____

area of left side: _____ **x** ____ = ____


area of top: _____ **x** ____ = ____

area of front: _____ **x** ____ = ____

area of bottom: _____ **x** ____ = ____

area of right side: _____ **x** ____ = ____

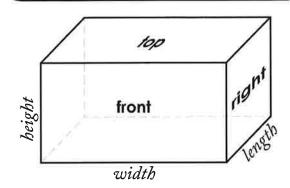
area of back: _____ x ___ = ____ surface area = _____

area of left side: _____ x ____ = ____

area of top: _____ x ____ = ____

area of front: _____ **x** ____ **=** _____

area of bottom: ____ x ___ = ____


area of right side: _____ **x** ____ = _____

area of back:

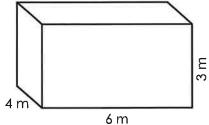
Super Teacher Worksheets - www.superteacherworksheets.com

___ × __

Surface Area

area of **front** =
$$h \times w$$

area of **back** = $h \times w$
area of **front** + **back** = $2(h \times w)$

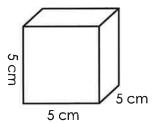

area of **top** =
$$w \times l$$

area of **bottom** = $w \times l$
area of **top** + **bottom** = $2(w \times l)$

area of **right** =
$$l \times h$$

area of **left** = $l \times h$
area of **right** + **left** = $2(l \times h)$

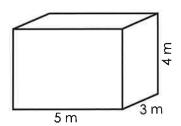
Surface Area =
$$2(h \times w) + 2(w \times l) + 2(l \times h)$$


Calculate the Surface Area (S.A.) for each rectangluar prism by using the formula S.A. = $2(b \times w) + 2(w \times l) + 2(l \times b)$

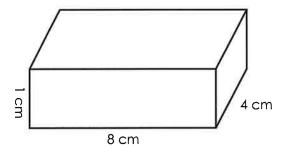
a.

a. _____

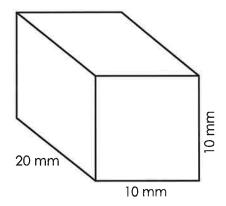
b.


b. _____

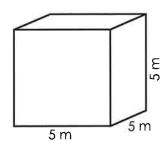
c. length = 14 mmwidth = 9 mmheight = 20 mm

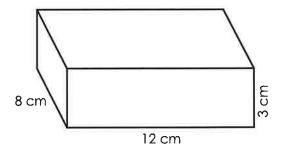

c. _____

Surface Area

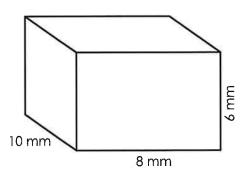

Find the surface area of the following figures.

surface area = _____

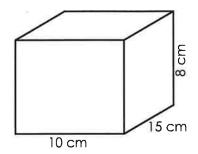

surface area = _____

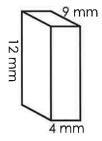

surface area = _____

Surface Area

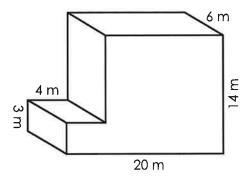

Find the surface area of the following figures.

surface area = _____

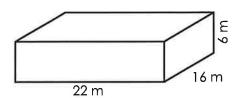

surface area = _____

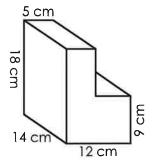

surface area = _____

Surface Area

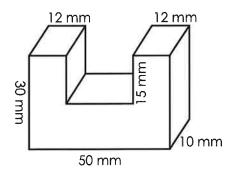

Find the surface area of the following figures.

surface area = _____


surface area = _____

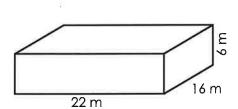

surface area = _____

Surface Area

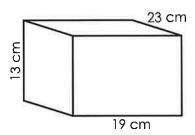

Find the surface area of the following figures.

surface area = _____

surface area = _____

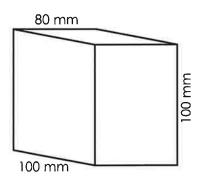


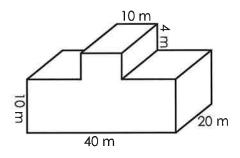
surface area = _____


Surface Area

Find the surface area of the following figures.

a.


b.


surface area = _____

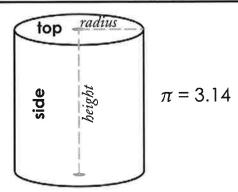
surface area = _____

c.

d.

surface area = _____

surface area = _____

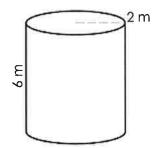

e. A bar of soap has the following measurements: 25 mm x 34 mm x 10 mm. What is the total surface area of the bar of soap?

surface area = _____

f. The measurements for a television are 120 cm wide, 68 cm high, and 14 cm deep. What is the total surface area of the television?

surface area = _____

Surface Area of a Cylinder

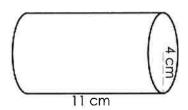

area of **top** =
$$\pi r^2$$

area of **bottom** = πr^2
area of **top** + **bottom** = $2\pi r^2$

area of side =
$$circumferance \times height$$

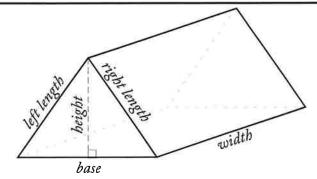
circumferance = $2\pi r$
area of side = $2\pi rh$

Surface Area =
$$2\pi r^2 + 2\pi rh$$


Calculate the Surface Area (S.A.) for each cylinder by using the formula S.A. = $2\pi r^2 + 2\pi rh$. Use 3.14 for π .

a,

a. _____


b.

b. _____

c. radius = 12 mmheight = 3 mm

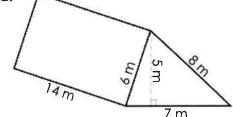
Surface Area of a Triangular Prism

area of **front triangle** =
$$\frac{1}{2}$$
 ($b \times b$)

area of **back triangle** =
$$\frac{1}{2}$$
 ($b \times b$)

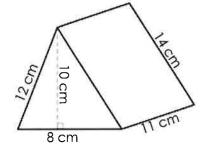
area of front triangle + back trangle =
$$b \times b$$

area of **right side** = $right \ l \times w$


area of **left side** =
$$left l \times w$$

area of **bottom** =
$$b \times w$$

Surface Area =
$$(b \times b) + (right \ l \times w) + (left \ l \times w) + (b \times w)$$


Calculate the *Surface Area* (S.A.) for each triangular prism by using the formula $S.A. = (b \times b) + (right \ l \times w) + (left \ l \times w) + (b \times w)$.

a.

a.

b.

b. _____

base = 20 mm

height = 15 mm

right length = 24 mm

left length = 18 mm

width = 30 mm

c. _____